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Abstract. Random walks in one-dimensional environments with an additional dynamical feedback-coupling
is analyzed numerically. The feedback introduced via a generalized master equation is controlled by a
memory kernel of strength λ the explicit form of which is motivated by arguments used in mode-coupling
theories. Introducing several realizations of the feedback mechanism within the simulations we obtain for
a negative memory term, λ < 0, superdiffusion in the long time limit while a positive memory leads to
localization of the particle. The numerical simulations are in agreement with recent predictions based on
renormalization group techniques. A slight modification of the model including an exponentially decaying
memory term and some possible applications for glasses and supercooled liquids are suggested. The relation
to the true self-avoiding is discussed.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.20.Dd
Kinetic theory – 64.60.Ht Dynamic critical phenomena

1 Introduction

Anomalous diffusion can be attributed to various reasons.
From a mathematical point of view, either anomalous dif-
fusion is related to Levi-flights with a well-defined power
law distribution of waiting times and jump lengths or
the diffusion process is realized on a fractal space, e.g.
on an infinite cluster at the percolation threshold. Ob-
viously, stochastic force fields are also able to generate
anomalous diffusion below a critical dimension [1,2]. Ad-
ditional to the random walk in an environment in which
there is a spatially random drift term F(r) a feedback-
coupling of the random walker to its local environment at
a former time can be also the reason for anomalous dif-
fusion. This alternative way had been recently proposed
by one of us (M.S.) [6] within an analytical model and
by applying a renormalization-group approach. Here, we
will demonstrate that the analytical results based on an
one-loop expansion can be confirmed by numerical simu-
lations. Moreover, the numerics yields additional informa-
tion about the crossover to the memory dominated case
and leads to systematic corrections which are not included
in the analytical approach. Furthermore, we apply several
methods that can systematically overcome possible non-
stationarities in the data, especially in case of a memory
coupling.

Our model with the feedback-coupling bears a close re-
semblance to the true self-avoiding walk considered in the
eighties by several authors [3,4], for a renewed approach
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see [5]. Different to those models we have enclosed an ex-
plicit feedback-coupling term which is non-local in times.
As demonstrated both by analytical studies [6] and by our
present numerical approach the feedback-coupling leads as
well as to a modified diffusive behavior (with similar ex-
ponents, see below) and additional also to localization of
the particle.

Motivated is this kind of analysis by considering glasses
and glass-like materials. In particular, our method seems
to be relevant for the explanation of various phenomena
in the vicinity of the glass transition of a supercooled liq-
uid [7], for a recent review see [8], or for the mixed mobile
ion effect [9,10], compare also [11]. Recently, it had been
pointed out that anomalous diffusion should be observed
in glasses below a characteristic time scale [12].

Our simulations are strongly supported by the mode-
coupling theory [7,8,13,14] which had indeed achieved
progress within an analytical approach of glass dynamics.
However, the applicability of the mentioned theory is not
restricted to glasses but it should be also relevant for other
dynamical processes where a feedback-coupling plays an
decisive role. Therefore, let us summarize for further con-
venience the general ideas behind the mode-coupling con-
cept. It based on the following steps:

(i) Starting from the deterministic equation of motions
all irrelevant observables will be eliminated applying
a suitable projection operator formalism; as a conse-
quence, the correlation functions of the relevant ob-
servables are determined by homogeneous equations
due to Mori-Zwanzig [15].
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(ii) The memory terms included in those resulting equa-
tions can be expressed in terms of the mentioned cor-
relation functions of the relevant variables [14,16].

(iii) Using appropriate approximations, especially for the
memory kernel, one is able to get solutions of the
self-consistent, nonlinear integro-differential equation
for the correlation functions which had been done in
studying glasses in a series of papers [13,7].

As already stressed the projection formalism can be
used in a similar manner to study even the behavior of
a single particle in a random environment. In that case
only the coordinate of the particle is a relevant observable.
Following the line given above for the mode-coupling ap-
proach one can derive an equation for the probability dis-
tribution function P (r, t) which describes the probability
to find a particle at time t in an interval around the point
r. Such an equation with a memory term is well known as
Nakajima-Zwanzig equation (or generalized master equa-
tion) [17]. It can be obtained by applying a suitable projec-
tion operator on the total probability distribution in the
phase space. Typically, a one-particle distribution function
obeys the Fokker-Planck-equation. Recently, using similar
arguments as for deriving the Nakajima-Zwanzig equation,
a generalized (nonlinear) Fokker-Planck equation has been
proposed [6] including a memory term:

∂tP (r, t) = D∆P (r, t) +∇F(r, t)P (r, t)

− λ
t∫

0

P 2(r− r′, t− t′)∂t′P (r′, t′)ddr′dt′.

(1)

Following [13] the additional last term is originated from
the general form of the memory term within the corre-
sponding Nakajima-Zwanzig equation written in the form∫
K̂(r− r′, t− t′)∂t′P (r′, t′)ddr′dt′. Here, the kernel K̂ is

expanded in terms of the probability P (r, t). The same
arguments as used successfully in the mode-coupling the-
ory [7,8,13,14] lead to a first nonzero contribution when
K̂ ' P 2. Thus, we have taken into account the lowest or-
der term in the memory kernel. Higher order terms can
also occur but they are irrelevant in the renormalization
group approach [6]. In that case where memory effects can
be neglected completely (λ = 0), equation (1) describes
the diffusive motion (with diffusion coefficient D) of a par-
ticle in an environment defined by the external force field
F(r, t). Physically, such a force field simulates the influ-
ence of all other particles of the system. Each particle in a
system without any long-range order, such as a glass, can
experience locally a different environment. Whereas for
λ = 0 the particle under consideration does not influence
its neighborhood the inclusion of the memory term gives
rise to a feedback-coupling. Due to that coupling mani-
fested by the memory term in equation (1) the motion of
a particle is apparently influenced. The probability to find
a certain particle at the point r at time t is also determined
by the probability to find that particle in the surroundings
prior the actual observation at t. As pointed out in [6] a
positive memory coupling strength (λ > 0) enhances the

probability that a particle is able to visit one of its initially
occupied site during a finite time interval. To be more
specific, let us consider only the influence of the memory
term. In that case equation (1) suggests an increase of the
probability P (r, t) in time whenever the particle at r′ to a
previous time t′ = t−τ has offered a high tendency to leave
this position. In such a manner a positive memory strength
favors a return of the particle to a certain point during the
sufficient long time interval τ . On the other hand, a neg-
ative memory (λ < 0) should prevent strongly the return
to a site initially occupied. As mentioned above, the ba-
sic mechanism appears to be very close to so called true
self-avoiding walk [3,4]. Within that fundamental model
a traveler had been considered who steps randomly how-
ever under avoiding sites visited already. The underlying
stochastic process for the position R(t) is determined by
a Gaussian distributed noise term and a density ρ(r, t)
which varies whenever the walk crosses the point r at time
t. In our model, we study the time evolution for the prob-
ability P (r, t) itself. When the factor λ in equation (1) is
negative the tracer particle tries indeed to avoid lattice
sites which it had been visited already before. Different
to the congenial approach [3,4] in our model the avoid-
ing effect is approximated by a non-local feedback term.
Moreover, the system depends strongly on the sign of the
memory term resulting in a different physical behavior,
anomalous diffusion or localization, alternatively. Such a
behavior had been observed in more detail applying a dy-
namical renormalization group approach [6]. An analysis
of equation (1) shows the existence of various anomalous
diffusion regimes below the critical dimension dc = 2. The
results are based on a one loop-expansion and further-
more they are only valid in the vicinity of the fixed point.
It is the aim of the present paper to analyze numerically
the model introduced above. The simulations presented
here support the predicted anomalous diffusive behavior.
Moreover, the localization expected in case of λ > 0 is also
manifested by the numerics.

To clarify the role of the memory term in equation (1)
the following investigations are restricted to irrelevant
force fields F(r, t) realized for instance if the force field is
stochastically time-dependent with a correlation function
〈Fα(q, t)Fβ(q′, t′)〉 ∼ δ(t−t′)δ(q−q′) or if the force is time
independent, but F(r) is related to a random potential V
with short range correlations, i.e. 〈V (q)V (q′)〉 ∼ δ(q−q′).
In all those cases the renormalization group approach
yields asymptotically a superdiffusive regime for a neg-
ative feedback-coupling strength where the mean square
displacement behaves as

〈
r2
〉
' t1+d/2, d is the dimen-

sionality. As discussed before a positive memory strength
supports the localization of the particle in the environ-
ment of its starting point.

Subsequently, we present the results of a Monte-
Carlo simulation of the feedback-coupling model. The
main problem of the simulations consist of finding out
an adequate procedure which allows us to include both
the positive and the negative memory in an appropri-
ate manner. Finally, a slight modification of the original
model is discussed by considering a special exponentially
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decaying memory kernel denoted as weak memory. It will
be argued that such an extended version reflects some fea-
tures of tracer diffusion in glasses or supercooled liquids.
Especially, the model with a weak memory term is suit-
able to describe the crossover from a regime dominated by
anomalous diffusion at short and intermediate time scales
to conventional diffusion for sufficient long times.

2 The model

In this paper we focus our attention to the 1-dimensional
case. The situation for a 2-dimensional system, which of-
fers logarithmic corrections, has been analyzed in more
detail elsewhere [18]. The motion of the tracer particle is
defined by a series of discrete jumps within discrete time
intervals. Using δτ as an elementary time step, the finite
time scale is given by t = nδτ (n = 0, 1, 2, ...). The diffu-
sion is now realized by jumps between neighbored lattice
sites within the discrete time t. Now let us define local
connection values bi characterizing the bonds between the
adjacent lattice sites i and i+1. The transition rates from
i to i + 1 and from i to i − 1, respectively, for a particle
located at lattice site i are defined by

ki,i+1 =
bi

bi + bi−1
and ki,i−1 =

bi−1

bi + bi−1
· (2)

Thus, ki,i+1 + ki,i−1 = 1, i.e. the total probability for
a jump of a particle is always 1. The initial values for
each bi are fixed by bi = 1 for all lattice sites. If the
connection values remain unchanged, a simple conven-
tional 1-dimensional random walk is realized by those
hopping processes. To include also a memory effect, we
introduce a self-induced change of the connection values,
which gives rise to the feedback of the particle to its envi-
ronment. That means, the quantities bi become now time-
dependent. After each time step the local connection val-
ues have been redefined using the rules

bi(t+ δτ) 6= bi(t) if the actual jump crosses
the bond between i and i+ 1,

bi(t+ δτ) = bi(t) if the actual jump crosses
another bond. (3)

The first rule has to be specified in the following manner:
a positive memory is defined by a change bi(t+δτ) > bi(t),
a negative memory requires bi(t+δτ) < bi(t). These time-
dependent connection values break the symmetry of the
transition rates, i.e. the local rates for a jump to the left
hand side or to the right hand side may be differ from
each other after a sufficient long time. Obviously, a mul-
tiple crossing of a bond leads to an accumulation effect
which is able to increase (or to decrease) the local connec-
tion value considerable, also if |bi(t+ δτ)− bi(t)| � bi(t).
It can be argued, that this accumulation effect supports
the generation of a (self-induced) localization (in the case
of a positive memory) or of a superdiffusion (negative
memory).

Fig. 1. Mean square displacement for a negative memory with
strength ε = 0.01, 0.02, 0.05 and 0.2. The asymptotic behavior
for t → ∞ corresponds to a superdiffusion with the universal
exponent 2/z = 1.37.

3 Results

3.1 Superdiffusion

We use the following quantitative rule: each crossing of a
bond (i, i + 1) by the particle changes the corresponding
connection value via

bi → bi(1− ε)

with 0 < ε < 1. Such a relation generates a negative
memory. The control parameter ε determines the coupling
between particle and environment (ε = 0 corresponds to
normal diffusion). We expect that each nonzero ε leads
always to a superdiffusive behavior. Thus, the numerical
simulations had been realized for various values of ε (see
Fig. 1). The determination of the time-dependent mean
square displacement shows a normal diffusion for short
times and small ε. But after a well defined time τcross (ε)
we obtain a crossover to a superdiffusive behavior

〈x2〉 ∼ t2/z

with the universal exponent 2/z = 1.37 ± 0.02. Let us
compare this numerical result with the predictions of the
dynamical renormalization group [6]. This calculation tak-
ing into account only 1-loop corrections predicts for the
exponent 2/z = 3/2 for d = 1, i.e. the agreement between
numerical simulations and analytical predictions is a rea-
sonable one. Although we are not able to find a unique
mapping of our model to that for the true self-avoiding
walk [3,4], our exponent is remarkable very close to the
exponent 4/3 obtained within that approach. However,
it is easy to check that the flow equations for the true
self-advoiding walk and the corresponding ones for our
model [6] are different.

Let us stress that our previous studies at the critical
dimension d = 2 are in agreement with the suggestions for
the exponent ζ in [4].
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Fig. 2. Master curve of the mean square displacements with
negative memory. The collaps of all curves corresponds to uni-
versality of the superdiffusion behavior.

Fig. 3. Inverse crossover time (in units of 1/τ (0.01)) as a func-
tion of the control parameter ε.

A rescaling of time and coordinates leads to a collapse
of all curves presented in Figure 1 onto a scaling function
Φ−, i.e. we obtain the general representation

〈x2〉 = ρ (ε)Φ−
(

t

τcross(ε)

)
with Φ− (s) ' s for s → 0 and Φ− (s) ' s2/z for s → ∞,
compare Figure 2. The special definition of our model
leads immediately to the relation ρ (ε) = τcross(ε). More-
over, Figure 3 shows the crossover time as a function of ε.
Obviously, we find the scaling relation

τcross(ε) ∼ ε−θ

with the numerical result θ = 1.97± 0.04.

3.2 Localization

Instead of applying the obvious rule bi → bi (1 + ε) with
ε > 0 numerical arguments suggest to use a weaker ad-
ditive mapping: each crossing of a bond (i, i + 1) by the

Fig. 4. Mean square displacement for a positive memory (ad-
ditive mapping) with various strength ϑ.

particle changes the corresponding connection value via

bi → bi + ϑ

with ϑ > 0. This relation corresponds to a positive mem-
ory and we expect for each parameter ϑ > 0 the localiza-
tion of the particle in a region around the initial position.
The determination of the time-dependent mean square
displacement shows for short times again a normal diffu-
sion, which decreases continuously after a crossover time
τ ′cross (ϑ). Asymptotically, the mean square displacement
approaches a constant value. The curves of Figure 4 sug-
gest a localization radius

lim
t→∞

√
〈x2〉 ∼ R (ϑ) .

A rescaling of time and coordinates leads again to a col-
lapse of all curves onto another scaling function Φ+. The
general representation reads

〈x2〉 = R2 (ϑ)Φ+

(
t

τ ′cross(ϑ)

)
with Φ+ (s) ' s for s→ 0 and Φ+ (s) = 1 for s→∞, see
also Figure 5. In our model we find the relation R (ϑ) =√
τ ′cross(ϑ). Figure 6 shows τ ′cross(ϑ) as a function of ϑ.

The numerical results yield

τ ′cross(ϑ) ∼ ϑ−θ

with θ = 2.03±0.05. But let us emphasize that, of course,
a multiplicative mapping bi → bi (1 + ε) generates also a
localization, depicted in Figure 7. Furthermore, it should
be remarked the scaling function Φ+ is not a universal
one, i.e. different mapping procedures bi(t) → bi(t + δτ)
lead to different functional shapes of the mean square dis-
placement 〈x2〉(t).

3.3 Probability distribution of the tracer particle

The probability that the particle occupies at the time t
the position x = ja (a: lattice unit) is defined as P (x, t).
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Fig. 5. Master curve of the mean square displacements with
positive memory and additive mapping. The collaps of all
curves corresponds to universality of the superdiffusion behav-
ior and indicates localization for sufficient long times.

Fig. 6. Inverse crossover time τ ′ (in units of 1/τ ′(0.05)) as a
function of the control parameter ϑ.

Because of the inversion symmetry we can restrict our
investigations onto the probability distribution function
P (|x| , t). The knowledge of this function allows the deter-
mination of all moments 〈x2n〉 (n = 0, 1, 2, ...). Figures 8
and 9 show the evolution of P (|x| , t) for the localization
case with ϑ = 0.01. It is clear visible, that the proba-
bility distribution changes their shape from a Gaussian
curve (at very short times) to an exponential like distri-
bution for long times. This transition is continuously, but
one can relate only partially the crossover time τ ′cross(ϑ)
with this behavior. Although noticeable deviations from
the Gaussian shape occur also for relative short times, we
find that they have only a weak influence on the short
time behavior of the mean square displacement. But it
can be expected that higher moments or combinations
of these quantities should indicate the deviations of the
probability distribution from the Gaussian shape sooner.
The function P (|x| , t) approaches for sufficient long times

Fig. 7. Comparison of the mean square displacement for a
positive memory with multiplicative mapping (full line) and
for a positive memory with additive mapping (dotted lines).
Both types of mapping show localization.

Fig. 8. Evolution of the probability distribution P (|x| , t) (pos-
itive memory and additive mapping with ϑ = 0.01) after 19,
44, 142, 1009, 7020, 49 184, 130 414, 345 922, 917 722, 2 434 860,
3 966 045 and 6 460 259 elementary steps. The time increases in
the direction of the arrow.

Fig. 9. Half logarithmic representation of the probability dis-
tributions P (|x| , t) of Figure 8.
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Fig. 10. The function µ(t) defined in Section 3. with positive
memory and ϑ = 0.01).

to exp {−µ(t) |x|}, with µ(t) → const. for t → ∞ (see
Fig. 10). The half logarithmic representation, compare
also Figure 9, reveals that the region nearby to the ini-
tial position becomes first of all an exponential-like dis-
tribution, whereas the logarithm of the distribution func-
tion approaches asymptotically a parabolic shape for large
distances, i.e. regions far away from the initial point are
characterized by the tail of a Gaussian probability distri-
bution. The reason for this behavior can be explained in a
simple manner. The particle is able to visit those sites very
rarely which are sufficiently far away to the initial point,
i.e. we expect only small corrections of the corresponding
connection values bi and therefore a nearly Gaussian like
behavior of the probability distribution appears. On the
other hand, the particle remains frequently in the environ-
ment of the initial position. This leads to an accumulation
effect, i.e. the bi will be strongly changed and the proba-
bility distribution degenerates to an exponential function.

4 Generalization: weak memory

A modification of the rules introduced in equation (3) are
introduced as follows. After each time step, the original
transformation (3) will be realized. Then, all connection
values bi will be reduced by application of an additional
step

bi → (bi − 1) exp{−ζ}+ 1. (4)

Hence, if the particle crosses not a given bond over a long
time interval, the corresponding connection value relaxes
to the initial value bi = 1. Equation (4) means that the
memory term of the Fokker-Plack equation (1) contains
now an additional damping term:

λ

t∫
0

P 2(r− r′, t− t′) exp {−ν(t− t′)} ∂t′P (r′, t′)ddr′dt′

(5)

Fig. 11. Mean square displacement as a function of time for a
weak positive memory (ϑ = 0.1) with the the control parameter
ζ = 10−2, 10−3, 10−4 and 10−5. ζ decreases in the direction of
the arrow.

(with ν ∼ ζ). Such an attenuation leads to a shift of the
poles originated by the memory term and therefore the
critical phenomena indicated for sufficient long time scales
t� ν−1 ∼ ζ−1 do not appear. Instead of that a crossover
is expected to a normal diffusion at a characteristic time
τ? ' ζ−1. This assumption is supported by the numerical
results, depicted in Figure 11. For short and intermediate
time scales we observe the same behavior as for ζ = 0,
i.e. firstly the particle shows a normal diffusive behavior
followed by the onset of localization. But after a charac-
teristic time τ? ' ζ−1 the diffusion becomes again normal.
Some features of this behavior are similar to the particle
diffusion in real glasses. For example, the cation diffusion
in silica glasses (sometime described as a diffusion in quasi
1-dimensional channels [19]) may be influenced by the dis-
cussed effects, which should contribute to the well known
anomalies of the electrical conductivity in ionic glasses.

A further extension of our model consists of including
a power-law damped memory kernel which should give rise
to a subdiffusive behavior with an exponent which varies
with the exponent of the tail of the feedback term [20].

5 Conclusions

Here, we have presented simulations which strongly sup-
port the one-loop renormalization group result [6], af-
ter that a positive memory strength below dc = 2 com-
bined with irrelevant drift forces, compare equation (1),
leads surprisingly to a pronounced localization effect of
the particle. The result is indeed remarkable, because dif-
fusion under the influence of pure spatially random drift
forces [1,2] does not possess localization. Thus, we con-
clude localization is induced by the memory term ex-
clusively. From that point of view, localization appears
for pure dynamical reasons, namely by the feedback-
coupling between the particle and the environment which
will be observable in case of an arbitrary positive memory
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strength below the critical dimensionality. But it can be
argued that a strong localization below dc will also exist
above dc. Such a conclusion is in correspondence with [21]
where the existence of a critical λc is predicted. Whereas
for d > dc and λ ≥ λc the particles are localized, conven-
tional diffusion occurs for d > dc and λ < λc.

On the other hand, a negative memory strength λ <
0 is related to superdiffusion for d ≤ dc. Conventional
diffusion is expected to occur above the critical dimension.
Although a one dimensional glass system does not exist in
nature we believe that some special kinds of glass-formers
offering the mixed mobile ion effect [9,10,22] should be
considered as possible candidates for that regime.

However, in case that a soft memory term (introduced
by Eqs. (4) or (5)) describes the behavior of glassy
systems approximatively such anomalous effects are
suppressed apparently above a characteristic time scale.
We argue that this time scale should be directly related
to the typical relaxation time for structural fluctuations
known as the α-process in supercooled liquids. Hence,
a permanent localization (or superdiffusion) should be
realized if this relaxation time diverges. Under that cir-
cumstances the glass becomes completely (or sufficiently
strong) frozen in the region around the experimentally
extrapolated Kauzmann-temperature. The last considera-
tions are in agreement with the results of the conventional
mode-coupling theory [13,7,14] for glasses. The theoreti-
cal approach predicts a change from liquid-like transport
properties to solid-like transport properties with localized
particles, at least for a sufficient long time scale. Let us
however point out that the conventional mode-coupling
theory describes the behavior of collective properties
while our research concerns single particles. Moreover,
our numerical simulations (and the corresponding renor-
malization group approach [6]) show both localization
and superdiffusion as universal effects determined only by
the feedback-coupling. Furthermore, our model is related
to the true self-avoiding walk discussed by [3,4]. Although
the underlying basic mechanisms between that model and
our approach is closely related to each other, there is no

apparent mapping of both models. However, our simula-
tions have confirmed the exponent z = 4/3 in the cited
papers with reasonable accuracy.
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